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The field-angular oscillation of the magnetothermal conductivity is a powerful method for clarifying the gap
symmetry of unconventional superconductors. It has been used successfully in Sr2RuO4, CeCoIn5, and the
cuprates, and has been applied to the heavy-fermion superconductor UPd2Al3. Despite this last application,
however, there is still a controversy regarding the gap symmetry of UPd2Al3, with separate proposals for
��k�=�0 cos kz and ��k�=�0 cos 2kz in the literature from analyzing the same thermal-conductivity data. In
this paper we systematically study this important issue and show conclusively from all available experimental
evidence that, consistent with theoretical grounds, �0 cos kz is the actual gap function of UPd2Al3.
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I. INTRODUCTION

In unconventional superconductors the gap function or su-
perconducting order parameter �OP� transforms as a non-
trivial representation of the symmetry group of the crystal.
The latter is comprised of point-group and translation group
operations as well as gauge transformations and time-
reversal operation.1 Because superconductivity implies off-
diagonal long-range order,2 the order parameter does not cor-
respond to the density of a physical observable. Therefore it
cannot be observed directly and its symmetry is notoriously
hard to determine. The main established methods are the
low-temperature behavior of thermodynamic quantities,
NMR Knight shift and relaxation rate,3 and more recently the
field-angle-resolved magnetothermal transport3,4 and feed-
back spin-resonance effects in inelastic neutron scattering
�INS�.5,6 These methods cannot give a precise determination
of ��k� everywhere on the Fermi surface �FS� but at best the
position and orientation �with respect to ki, i=x ,y ,z axes� of
node lines and points where ��k� vanishes.3,4

The latter method has recently been quite successful in
determination of nodal positions in the heavy-fermion super-
conductors such as UPd2Al3,7–10 CeCu2Si2,11 and CeCoIn5.12

The nodal positions may be determined when a feedback
resonance in the superconducting state is observed at a posi-
tion Q with an energy �r�2�0. It has appreciable intensity
only when the BCS coherence factors at Q are large which
necessarily requires the condition ��k� =−��k+Q� to be
fulfilled. This condition is very selective for the supercon-
ducting order parameter and almost as strong as a Bragg
condition for magnetic order parameters. Indeed in CeCu2Si2
the feedback resonance in the superconducting sample is re-
placed by a spin-density wave �SDW� Bragg peak at the
same �incommensurate� wave vector for samples with differ-
ent stoichiometry. A similar observation is made in Ir-doped
CeCoIn5 which develops incommensurate magnetic order13

at a wave vector QSDW which has the same in-plane compo-
nents as Q where the undoped superconducting compound
displays the feedback resonance.12

The method of field-angle-resolved magnetothermal
conductivity4 is based on Volovik’s observation14 that, in the
vortex phase of unconventional superconductors with line

nodes, quasiparticle states may exist outside the vortex cores.
They can carry a heat current perpendicular to the vortices
whose magnitude depends on the orientation of the field with
respect to the node lines. When the field orientation is con-
tinuously rotated in a crystal plane, two situations may occur
�Fig. 1�: if the field direction crosses the nodal plane �left�
typical angular oscillations in the low-T thermal conductivity
�heat current � vortex direction� appear. Field-angular oscil-
lations of this type are also observed in the low-T specific
heat. If the field is rotated within the nodal plane �right�, no
oscillations are observed. By using different field-rotation
planes in the experiment, one may thus infer the orientation
of the nodal plane with respect to the crystal axes. Fortu-
nately, this determination does not depend on any quantita-
tive analysis but may be directly obtained by inspection of
experimental results. On the other hand it is not obvious at
which position perpendicular to this plane �along the z axis
in Fig. 1� the node lines are located. To decide this issue a
detailed theoretical analysis for the possible model gap func-
tions is required.

This is different from the INS feedback method which
gives both the nodal plane and the position of nodes along
the perpendicular coordinate. INS was able to identify the
dx2−y2 gap function in CeCoIn5 uniquely5,12 whereas specific
heat and thermal-conductivity results only determined the
nodal plane as perpendicular to the tetragonal ab plane but at
first were not able to distinguish between the dx2−y2 �Ref. 15�
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FIG. 1. �Color online� Schematic illustration of geometry in
field-angle-resolved magnetothermal-conductivity experiments. In
both configurations �left �right�: H rotation in xz �xy� plane� the
heat current is perpendicular to the field-rotation plane. The node
line of the order parameter is indicated by the dashed line. For this
geometry �yy��� shows oscillations while �zz��� does not.
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and dxy �Ref. 16� states. For further discussion of this issue,
see Ref. 17.

In this work we consider exclusively the heavy-fermion
superconductor UPd2Al3.18 An extended body of experimen-
tal and theoretical work has accumulated on this compound.
Despite this effort there is still no consensus on the symme-
try of ��k� as seen from Ref. 19 �i.f. denoted as �I��, Ref. 20
�i.f. denoted as �II��, and also in Ref. 21. This compound is
unique because it is the only heavy-fermion system where
the nonphononic nature of pairing has been confirmed.8,22,23

Therefore it is important to clarify the issue of gap symme-
try. Before we enter this discussion we briefly summarize the
basic physical properties of UPd2Al3. For more details we
refer to Ref. 3. This moderate heavy-fermion compound ��
=140 mJ /mol K2� with D6h symmetry orders antiferromag-
netically at TN=14.3 K with a sizable moment �=0.85�B.
The easy-plane antiferromagnetic �AF� structure consists of
ferromagnetic �FM� planes stacked along the c axis with al-
ternating moments, i.e., a commensurate Q= �0,0 , 	

c � with
c=4.185 Å denoting the lattice constant of the chemical unit
cell along the hexagonal axis. Because Tc=1.8 K is much
smaller than TN the AF order will not be influenced by the
onset of superconductivity. On the other hand the large mo-
ment staggered magnetization leads to an exchange splitting
and reconstruction of conduction-electron bands which have
to be considered in the AF Brillouin zone with zone bound-
aries �Bragg planes� at kz= 


	
2c .

In Sec. II we introduce microscopic models for the 5f
electronic structure and the associated pairing mechanism.
This section will be kept short because an extensive literature
about this topic exists.3,23–26 The INS and magnetotransport
experiments from which the controversy about the gap sym-
metry appeared will be discussed in detail in Sec. III. In the
main Sec. V we will discuss the proper interpretation of the
magnetothermal-conductivity results and compare the result-
ing gap function with the INS results. Finally, Sec. VII gives
the conclusions.

II. ELECTRONIC STRUCTURE AND PAIRING MODELS

Now we briefly discuss the main microscopic theoretical
models put forward to explain the heavy-fermion character
as well as the magnetic order and superconductivity. The 5f
states in UPd2Al3 have a dual character: they are partly lo-
calized and partly itinerant.8,24 The localized 5f electrons,
with two low lying crystalline electric field �CEF� split sin-
glets about �CEF�6 meV apart, lead to an induced moment
magnetism.27 The conduction electrons have a FS whose
main sheet is a corrugated cylinder which is aligned with the
c axis24,28 and has a FS area corrugation �25%. We stress
that the FS cylinder is located in the magnetic Brillouin zone
and is terminated by the AF Bragg planes �Fig. 4�. The on-
site exchange interaction between both components leads to
two major effects:23,24 a mass renormalization to form heavy
quasiparticles with an enhancement of m� /mb�10 �mb
=band mass� and an effective intersite exchange interaction
between the localized singlet-singlet CEF excitations. The
latter causes the sharp CEF excitation at �CEF to broaden into
a band �E�q� of magnetic excitons which now extends from

1–8 meV �Ref. 27� and has a pronounced minimum at the AF
wave vector Q. For T�� they are bosonic excitations whose
virtual exchange processes with conduction electrons medi-
ate an effective pairing interaction between them which is
responsible for superconductivity in UPd2Al3.23

The absolute value of the effective pairing interaction has
a pronounced maximum at Q due to the minimum of �E�q�.
As in single-component itinerant spin-fluctuation theories,29

one then expects that the superconducting gap function
should show a sign change under translation k→k+Q, i.e.,
��k� =−��k+Q�. A linearized solution of Eliashberg equa-
tions indeed leads to the most favorable �with largest Tc�
singlet gap function ��k�=�0 cos kz.

23 Triplet gap functions
are not discussed here because the observation of a sizable
Knight shift30 gives a strong preference to the singlet state.
The gap function ��k�=�0 cos 2kz of Ref. 20 is not a solu-
tion with positive Tc in this model. In fact it has the property
��k�=��k+Q� and therefore cannot take advantage of a
pairing interaction peaked at Q. A similar observation was
made in Ref. 25 using a one-component itinerant spin-
fluctuation model for UPd2Al3. The self-consistently deter-
mined gap function obtained by solving the Eliashberg equa-
tions was found to resemble very closely the simple ��k�
=�0 cos kz in shape. Thus from the point of view of micro-
scopic models there is no reason to expect a gap function
��k�=�0 cos 2kz.

III. RESULTS ON GAP SYMMETRY DETERMINATION

In a series of INS results it was found that UPd2Al3 is the
first example of a heavy-fermion superconductor with a reso-
nant superconducting feedback effect:8,9,31 Above Tc a broad
INS peak at Q= �0,0 , 	

c � appears at the energy �E�Q�
�1.5 meV. At T=0.15 K�Tc an additional sharp inelastic
resonance at �r�0.35 meV appears which may be inter-
preted as a split-off satellite of �E�Q�. It is due to a feedback
effect of the superconducting order parameter on the pair-
forming magnetic exciton boson. The renormalized exciton
mode and the resonance satellite are solutions of Dyson’s
equation

�2 = �E
2�q� − 2g2�CEF�0�q,�� , �1�

where �CEF is the bare CEF splitting and g is the electron-
exciton coupling constant.10 The second term describes the
renormalization of the exciton by particle-hole excitations. In
the normal state �0�q ,�� shows little frequency dependence
and only a constant shift of �E occurs. However, below Tc
the particle-hole-excitation spectrum is modified due to the
gap opening which leads to a pronounced frequency depen-
dence of �0�Q ,�� around ��2�0 ��0=gap amplitude�. This
superconducting feedback on the conduction-electron re-
sponse and hence on the renormalized boson frequency �Eq.
�1�� leads to the appearance of an additional resonance as
shown in detail in a microscopic model.10 The resonance
exists only in the close vicinity of the wave vector Q and
shows an upward dispersion following that of the renormal-
ized exciton. The feedback resonance appears only when the
superconducting coherence factors in the electronic response
function are large. This necessarily implies that the condition
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��k+Q�=−��k� for the gap function must be fulfilled. The
resonance condition for the superconducting order parameter
has roughly a similar meaning as that of the Bragg condition
for a magnetic order parameter although at finite instead of
zero energy transfer, respectively. Therefore it was realized
rather early8,31,32 that the simplest type of gap function com-
patible with the resonance condition can be represented as
Fourier series with odd harmonics where ��k�=�0 cos kz is
the first harmonic contribution. On the other hand the
complementary even gap functions such as ��k�
=�0 cos 2kz which fulfill ��k+Q�=��k� have to be strictly
excluded when a resonance at Q like in UPd2Al3 is observed.
This issue is discussed further in Sec. IV. Thus the feedback
resonance condition in the superconducting state leads to the
same gap function10 �0 cos kz as the theoretical calculations
which use a magnetic excitation spectrum observed in the
normal state. This shows that the pairing model and the
theory of the resonance state are fully consistent.

This conclusion became even more convincing when the
second important technique, field-angle-resolved magneto-
thermal conductivity, was used to investigate the gap
symmetry19 �I�. Using two configurations �Fig. 1� with �i�
heat current �ŷ and rotating H in the xz plane with polar
angle �, and �ii� heat current �ẑ and rotating H in the xy
plane with azimuthal angle �, the thermal conductivities
�yy��� and �zz��� were measured. It was found that at low T
the former shows a pronounced twofold oscillation whereas
the latter shows none. Without any analysis it can then be
concluded that the node lines of the order parameter must be
parallel to the hexagonal ab �xy� plane. However no detailed
calculations were performed in �I� to find out at what posi-
tion �=ckz these lines are located. Rather it was argued
qualitatively, based on the proper cylindrical Fermi-surface
geometry and the Doppler-shift �DS� theory for transport co-
efficients. It was concluded that �0 cos kz leads to the proper
twofold oscillation of �yy��� while �0 cos 2kz would lead to
a fourfold oscillation in contradiction to experiment �see Fig.
4 in Ref. 19�. This conjecture was later fully confirmed by a
numerical evaluation of Doppler-shift based thermal conduc-
tivity in the unitary limit.21 So finally a complete agreement
on the gap symmetry �0 cos kz of UPd2Al3 based on INS
results, microscopic theories, and magnetothermal-
conductivity results was achieved.

However this consensus was called in question later in20

�II� on the basis of an approximate analytical Doppler-shift
treatment of thermal transport. It was proposed that only
�0 cos 2kz was compatible with thermal-conductivity results
opposite to INS results which rule out this gap function. This
ambiguity has to date not been resolved. Since UPd2Al3 is of
pivotal importance for understanding unconventional heavy-
fermion superconductivity, we reconsider this case here and
propose how to resolve the issue. Therefore in the present
work the magnetotransport is discussed within the same the-
oretical approach as was used in �II�.

IV. SYMMETRY CLASSIFICATION AND COEXISTENCE
WITH ANTIFERROMAGNETISM

Before we discuss the magnetothermal conductivity it is
appropriate to understand the symmetry classifications of

both gap function candidates. We restrict our analysis to gap
functions that depend only on kz since the node lines have
been found to be parallel to the ab plane. Furthermore the
effective pairing interaction peaks at a wave vector Q paral-
lel to kzẑ. Such gap functions belong to the A1g representa-
tion with respect to the point group D6h. We also consider
only singlet pairing, i.e., even under inversion. In this re-
stricted class only the translation along the z axis remains as
a symmetry operation. In real space the primitive translation
vector along z is 2cẑ because of the doubling of the AF unit
cell. This is the proper cell since TN
Tc and the exchange
splitting of conduction electrons is much larger than �0. In
reciprocal space the primitive translation is therefore Q= 	

c ẑ.
There are two possible classes of gap functions classified by
their transformation under translation by Q: �class A� ��k
+Q�=��k� and �class B� ��k+Q�=−��k�. Both are invari-
ant under all other symmetry elements. Therefore class A is
of a fully symmetric “extended s-wave” type whereas class B
behaves nontrivially under translation by Q and therefore is a
truly unconventional gap function. These gap functions may
be expanded in harmonics according to

class A: ��k� = �
n�1,odd

�0
�n� cos nkz � �0

�1� cos ckz,

class B: ��k� = �
n�2,even

�0
�n� cos nkz � �0

�0� + �0
�2� cos 2ckz.

�2�

In the real-space representation �0
�n� is the pairing amplitude

of a conduction state 	0,↑
 in hexagonal layer 0 with a state
	n ,↓
 in layer n. Since the hexagonal layers have FM order
stacked antiferromagnetically along c, this has important im-
plications for the coexistence with AF order discussed below.

The nodal structure of class A and B gap functions shows
an important difference: the unconventional class B has node
lines at �=ckz= 


	
2 lying in the Bragg planes of the AF

Brillouin zone. These node lines are symmetry protected due
to the sign change in the gap under translation by Q, i.e.,
they are independent of the higher harmonic coefficients
�since each odd harmonic vanishes at the Bragg planes�. We
can make the reasonable assumption that the higher har-
monic amplitudes decay quickly with order since the effec-
tive pairing interaction which is determined by the exciton
dispersion along c also shows only a pronounced harmonic
with n=1. Then the node line in the Bragg plane which is a
symmetry plane will be the only one and will be independent
of the details of the interaction models.

The situation is quite different for class B. First of all,
none of the even harmonics can be expected to have an ap-
preciable effective pairing potential for n=0 or n=2 because,
for the magnetic exciton mechanism, the former will always
be repulsive and the latter is not dominant in the exciton
dispersion. If, nonetheless, we assume that �0

�2� is the domi-
nant gap amplitude, then inevitably �0

�0� will also be induced
because these gap functions belong to the same symmetry
class B. Therefore the minimum model for class A �discard-
ing higher harmonics with n�4� is ��k�=�0

�0�+�0
�2� cos 2kz.

When n=2 is the primary OP and n=0 is induced we will
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have �0
�0���0

�2�, and this order parameter has node lines at
�=ckz= 


	
4 
 tan−1��0

�0� /�0
�2��. These nodal planes �even if

�0
�0�=0� are nonsymmetry planes of the hexagonal lattice.

They are not protected by symmetry requirements, and their
position depends on the amplitude ratio of n=0 and n=2.
Therefore fixing them at �=	 /4c as in �II�, i.e., assuming
�0

�0�=0 is arbitrary. Even if we accept this as a hypothesis we
should keep in mind that all known heavy-fermion supercon-
ductors �and in fact all known unconventional superconduct-
ors with inversion symmetry� have node lines within symme-
try planes.

Let us nevertheless accept class B as a candidate gap
function for the moment. There is another important aspect
which one has to keep in mind. The superconducting state
must be able to coexist deeply inside an AF phase that has an
appreciable staggered moment ��=0.85�B /U�. This problem
has been discussed by Shimahara26 and for clarity we repeat
here some of his arguments. Since the AF structure consists
of FM hexagonal layers stacked in an alternating manner
along c, it is natural to consider the pairing in c direction in
real space as interlayer pairing with a singlet amplitude
�ij

�s�= 1
�2

�ai↑bj↓−ai↓bj↑�. Here i , j denote the sites in each
layer and a or b denote layers with opposite moment or
molecular field hMF

a =−hMF
b . This leads to a different size of

the Fermi wave vectors kF�
a,b in a ,b type layers for electrons

with given spin �. The class A state corresponds to singlet
�antisymmetrized opposite spin� pairing in adjacent �nearest-
neighbor� a ,b layers which have also opposite ordered mo-
ments �molecular fields�. Therefore the Fermi radii will be
equal, i.e., kF↑

a =kF↓
b . This means that class A superconductiv-

ity is easily coexistent with AF order in UPd2Al3.26 On the
other hand a class B state corresponds to in-plane a-a and
interplane �next-nearest-neighbor� a-a� pairings. In both
cases the ordered moments and molecular fields will be
equal; however the paired singlet spins are opposite. There-

fore kF↑
a �kF↓

a and kF↑
a �kF↓

a� . The corresponding effective spin
splitting of such states at the AF zone boundary is estimated
to be of the order �ex�50–100 meV.10,23 This corresponds
to an AF molecular field of hMF�4.4–8.8�102 T which is
two orders of magnitude larger than the nominal BCS Pauli
limiting field HP=�0 /�2�B�3.3 T. Therefore class B pair-
ing states are strongly suppressed by AF order of UPd2Al3.

Together the symmetry analysis and AF coexistence con-
ditions make it already abundantly clear that a class B gap
function such as �0 cos 2kz is a most unlikely candidate.
However, it is important to analyze the thermal-conductivity
data whose analysis led to its proposal, in order to elucidate
the source of the discrepancy, as this has a bearing on future
magnetothermal-conductivity analyses.

V. MAGNETOTHERMAL CONDUCTIVITY

The divergent conclusions on the order-parameter symme-
try in UPd2Al3 arose from different interpretations of the
field-angle-resolved magnetothermal conductivity first pre-
sented in �I� and later discussed in �II� where the former
proposed class A and the latter proposed class B gap function
were realized. In both works the arguments are based on the

simple Doppler-shift approach.4,33,34 For the sake of com-
parison the same method will be used here.

The method is based on an observation by Volovik14 that
in the vortex phase of an unconventional superconductor
quasiparticle states exist outside the vortex cores which can
carry a heat current. They also lead to a residual zero energy
density of states �ZEDOS� N�0,H� whose value depends on
the field direction with respect to the orientation of the node
lines. Therefore rotation of the field may lead to an oscilla-
tory behavior of the thermal conductivity and also the spe-
cific heat which contain information on the nodal structure of
��k�.

In this experimental method pioneered by Y. Matsuda et
al. �for a review, see Refs. 3 and 4� the thermal conductivity
����H� is measured at temperatures T�Tc where the mag-
netic field H is rotated in a symmetry plane of the crystal.
Ideally the heat current jQ should be perpendicular to the
field-rotation plane. Thus �yy��� corresponds to field rotating
in the xz plane with � denoting the polar field angle from the
z axis. Likewise �zz��� corresponds to field rotation in the xy
plane with � denoting the azimuthal field angle from the x
axis; see Fig. 1 for an illustration. The main virtue of the
method is its ability to determine the orientation of node
lines in k space, i.e., whether such lines are parallel or per-
pendicular to symmetry axis, it may be determined without
any calculation by pure inspection of the oscillatory behavior
of ����H� under various geometries. For example, in
UPd2Al3 the experiment19 observed oscillations in �yy��� but
not in �zz���. From the geometrical arrangement in Fig. 1 it
is obvious without further analysis that in this case the node
lines must lie within the hexagonal ab �kxky� plane. However,
to determine at which position �=ckz along the hexagonal
axis, these lines are located demands a detailed theoretical
analysis and this has indeed led to different proposals for the
node line position in UPd2Al3.

A. Doppler-shift expressions for the thermal conductivity

In the independent �single� vortex approach which is valid
at fields sufficiently smaller than Hc2, the transport coeffi-
cients are expressed in terms of averaged transport integrals
containing the Doppler shift of quasiparticle energies. Nor-
malized to the maximum gap it is given by

x�k,r� = �p · vs�/�0 = �m�v · vs�/�0, �3�

where p�k�, v�k�, and m� are quasiparticle momentum, ve-
locity, and effective mass, respectively. Furthermore vs�r� is
the superfluid velocity around the vortex centered at r=0.
The averaging in transport integrals has to be carried out
over the Fermi surface �k� and with respect to the position
�r� from the vortex center. For our present purpose we use
the simplest possible approximation as, e.g., in Refs. 33 and
34. Firstly it is assumed that the condition �� �	x	
�0 for the
superclean limit is fulfilled where the ZEDOS is dominated
by the Doppler shift and the influence of the scattering rate �
can be neglected. Here �…
 denotes both averages over
Fermi surface and vortex coordinate.21,33,34 Secondly the av-
eraging over the Fermi surface is approximated by one over
the node line which gives the dominant contribution. This
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approximation is sufficient if one only wants to describe
qualitatively the angular oscillations; however it is too crude
to give the proper amplitude of the oscillation. Within the
superclean limit this was done by a fully numerical calcula-
tion of transport integrals21 and it was found that the oscil-
lation amplitude is of the order of a percent of the normal-
state conductivity �n which is indeed the experimental scale
of the oscillations.

In Refs. 20 and 34 a simple ellipsoid Fermi surface cen-
tered at the � �0,0,0� point is used for the calculations. Its
uniaxial anisotropy parameter �= �vc /va�2 is determined by
the Fermi velocities along a and c axes. This is the only FS
parameter that enters the calculation. The absolute size of the
FS is irrelevant as long as it is cut by the node line of the gap
function �see Fig. 4�. We will later discuss to which extent
such simplifying FS assumptions can be made. According to
Refs. 20 and 34 we then have, for the ZEDOS and thermal
conductivity, respectively,

N���
N0

= g��� =
2

	

va
�eH

�0
I��� ,

�yy���
�yy

n =
2

	

va
2�eH�
�0

2 I���Iyy��� , �4�

where N0 and �yy
n are the normal-state DOS and thermal

conductivity. The ZEDOS integral I��� and the transport in-
tegral Iyy��� have to be taken around the node line in the
hexagonal plane according to

I��� = �cos2 � + � sin2 ��1/4 1

	



0

	

d��L��,�,� sin2 �0� ,

Iyy��� = �cos2 �

+ � sin2 ��1/4 2

	



0

	

d� sin2 ��L��,�,� sin2 �0� ,

�5�

where sin �=vF
y /vF is the �normalized� quasiparticle veloc-

ity component along the direction of the heat current. Fur-
thermore the integrand is the absolute value of the Doppler
shift already averaged over the vortex coordinates. In addi-
tion Eq. �5� contains the averaging over the node line azi-
muthal angle �. The function under the square root is given
by20,34

L��,�,� sin2 �0� = cos2 � + sin2 ��sin2 � + � sin2 ��

+ �� sin � cos � sin�2�� , �6�

where �=ckz is the position of the node line along the c axis,
which differs in the two gap models discussed here. The
expression for �yy in Eq. �4� has a simple physical meaning:
with an additional factorization of Iyy��� we obtain approxi-
mately

�yy = �vy
2
Cs�tr,

Cs/Cn = g���; �tr/� = 	g��� , �7�

where Cn= �	2 /3�N0T is the normal state and Cs is the su-
perconducting state specific heat, respectively. Furthermore
�tr is the transport lifetime in the unitary scattering limit with
�=1 /2�, where � is the impurity scattering rate. The re-
duced ZEDOS g��� is defined in Eq. �4�. The approximate
expression in Eq. �7� which was also implicitly used in �II� is
simply the kinetic thermal transport formula. The field-
angular dependence of �yy��� in this approximation is en-
tirely determined by that of the field induced ZEDOS of the
heat carrying quasiparticles given in Eq. �4�.

B. Numerical results for transport integrals and relation to
Fermi-surface geometry

In the present model the field-angular dependence is in-
fluenced by two parameters: the nodal position � of the gap
function candidate and the overall quasiparticle velocity an-
isotropy �. Since the Fermi surface is described by a simple
ellipsoid, � is to be interpreted as an averaged quantity over
the real Fermi-surface sheets. This may in principle be ob-
tained from the anisotropy of the upper critical-field
slope.21,35,36 However experimentally the situation is not so
clear. Upper critical-field data from epitaxially grown thin
films37 suggest �=0.69. This value was used in previous
discussions.20,21 However it may be unreliable due to special
thin-film effects such as substrate strain, etc. On the other
hand the first measurements from bulk single crystals lead to
�=0.85.38 In a recent review39 a value �=1, i.e., isotropic
upper critical-field slope, is suggested. Here we take the in-
termediate value �=0.85. Our fundamental conclusions do
not depend on this value. Generally speaking, when � be-
comes larger the difference in the angular dependence of
thermal conductivity for the two gap functions discussed
here becomes more pronounced.

To determine the angular dependence of �yy���, it is nec-
essary to carry out the Doppler-shift integration around the
node line in Eq. �5� in a precise way. In �I� qualitative argu-
ments only were given and in �II� these integrals were ap-
proximated by replacing Eq. �5� with

Ĩ��� = �cos2 � + � sin2 ��1/4 1

	
�


0

	

d�L��,�,� sin2 �0� ,

�8�

and similarly for Ĩyy���, i.e., the node line averaging over �
is performed under the square root instead of outside. How-
ever it turns out that, for reasonably large � corresponding to
UPd2Al3, this causes a problem. This can be seen from a
comparison of thermal conductivities in Eq. �4� using the
exact numerically integrated I���, Iyy��� of Eq. �5� or the

approximations Ĩ���, Ĩyy��� in Eq �8�. The comparison is
shown in Fig. 2 for the B-class gap function �0 cos 2kz. It is
obvious that the approximation of Eq. �8� used in �II� misses
higher harmonics in � which are present in the exact DS

integrals of Eq. �5�. We conclude that the approximate Ĩ���
and Ĩyy��� of Eq. �8� leads to a twofold �dashed line� instead
of the proper fourfold �full line� thermal-conductivity oscil-
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lation for this gap function �Fig. 2�. Therefore in the follow-
ing for comparing with experimental results we will only use
the exact numerical DS integrals I��� and Iyy��� of Eq. �5�.
Note that in Fig. 2 and later figures we use the subtracted and
normalized thermal conductivity

��yy��� =

�yy��� − ��	

2
�

�yy�0� − ��	

2
� for �yy�0� � ��	

2
� ,

��yy��� =
�yy�0� − ����

�yy�0� − ��	

2
� + 1 for �yy�0� � ��	

2
� .

�9�

Thus ��yy�0� is always normalized to one and ��yy�
	
2 � is

always normalized to zero �two� depending on whether
��yy��� decreases or increases away from �=0. The same
normalization will be chosen for the experimental data of �I�.
The latter are now compared with theoretical results for both
class A and B order parameters �0 cos kz and �0 cos 2kz us-
ing the exact numerical DS integration in Eq. �5�. This com-
parison is shown in Fig. 3. It is obvious that none of the
models agrees with the experimental field-angle dependence.
As already mentioned, for the class B gap function with node
position �=	 /2 �dashed line�, the wrong oscillation period is
obtained. On the other hand class A gap function �full line�
leads to the proper period but the wrong sign, i.e., ��yy���
increases with increasing � in contrast to the experimental
values. The wrong period for class B was not noticed in �II�
because the approximate DS integration as shown in Fig. 2
has been used while the wrong sign for class A was also
noticed. Therefore it was concluded in �II� that �0 cos kz
�class A� is rejected by experiment and class B is confirmed.
The present exact numerical analysis of DS integrals given in

Fig. 3 however shows that no such conclusion can be drawn:
both gap functions �classes A and B� in this calculation fail to
explain the experimental data.

This is a surprising result, especially considering the
strong arguments for the correctness of class A from other
evidence explained in previous sections. Therefore one has
to inquire about the soundness of the calculation described
above. For both gap functions the problem is the upturn in
��yy��� for increasing �, starting immediately for class A
and above �=0.3	 for class B. The origin of this problem
can be spotted in the DS integrand of Eq. �6�. The term
�� sin2 � sin2� leads to a large increase in the integrand for
large � especially when �=	 /2 �class A�. This overcompen-
sates the prefactor in Eq. �5� and causes the increase in
��yy��� for large �.

This term is �vc
2, the square of the c component of the

Fermi velocity which is surprising for the following reason:
for �=	 /2 �class A� the node line is lying within the AF
zone-boundary Bragg plane. In such a case Bloch’s theorem
strictly requires that the quasiparticle velocity v is parallel to
the Bragg plane, i.e., there should be no term with a vc com-
ponent of the velocity in the case �=	 /2. The reason why in
the present model it appears nevertheless is illustrated in Fig.
4. The underlying Fermi-surface �FS� model used in �II� is a
� �0,0 ,0� centered elliptical Fermi surface with a single an-
isotropy parameter �= �vc /va�2 which is cut by the node line
either at �=	 /2 �class A� or �=	 /4 �class B for �0

�0�=0�. In
the former case the vc component is large for the nodal plane
at �=	 /2 despite the fact that Bloch’s theorem requires vc
�0 for quasiparticles in the Bragg plane. It is obvious that
the �-centered FS model cannot correctly describe this case.
This becomes clearer by looking at the true geometry of the
major FS sheet in UPd2Al3 shown in the right part of Fig. 4
�full lines� which is a corrugated cylinder. As indicated by
the arrows the quasiparticle velocity v=�−1�k�k is parallel to
the Bragg plane for �=	 /2 as it should be.

Therefore we conclude that the replacement of the corru-
gated cylinder by the �-centered cylinder FS is the source of
the problem because it violates Bloch’s theorem for quasi-

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
θ/π

-0.5

0

0.5

1
∆κ

yy

α = 0.85
χ = π/4

FIG. 2. �Color online� A comparison of normalized thermal con-
ductivity �Eq. �9�� for �0 cos 2kz gap function from an exact nu-
merical Doppler-shift integration �full line� according to Eqs.
�4�–�6� and an analytical approximation according to Eq. �8� used
also in Eq. �16� of Ref. 20 �II� �dashed line�. The latter is inadequate
because it leads to the wrong periodicity as compared to the exact
numerical integration.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
θ/π
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yy

H = 0.5 T
H = 1.0 T

χ = π/2
χ = π/4

α = 0.85

FIG. 3. �Color online� A comparison of normalized thermal-
conductivity calculations for �0 cos kz �full line, �=	 /2� and
�0 cos 2kz �dashed line, �=	 /4� using the exact numerical integra-
tion of Doppler-shift expressions �Eqs. �4�–�6��. Here the � �0,0,0�-
centered Fermi-surface model of Fig. 4 �left� is used. The symbols
are the experimental results from Watanabe et al. �Ref. 19� �I�. Both
gap models are in disagreement with the experimental results.
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particles on the �=	 /2 node line and this has led to the
spurious result for class A gap function �full line� in Fig. 3.
This failure can be remedied in two ways. Firstly one may
use the true corrugated cylinder Fermi surfaces as already
suggested in �I� and used in explicit calculations in Ref. 21.
This leads indeed to the proper behavior for the class A gap
function, i.e., a monotonous decrease in ��yy��� with in-
creasing angle. Secondly, one may modify the present model
calculation based on the simplified analytical treatment of
Eqs. �4�–�6� which requires one to keep the elliptical FS
model. For the comparison of different order-parameter mod-
els, it is not necessary to have a globally correct representa-
tion of the Fermi surface. It is, however, important that at the
node lines of the order parameters considered the quasiparti-
cle velocities of the true and approximated FS are close be-
cause they enter into the expression for the Doppler-shift
energy �m�v ·vs� which determines the angular oscillations of
the thermal conductivity. For class A and B gap functions
with �= 	

2 , 	
4 , respectively, the true corrugated cylindrical FS

may be well approximated by a shifted A-centered ellipsoid
as shown in Fig. 3 �right, dashed line� where A �0,0 , 	

2c � is
lying in the AF Bragg plane. For this shifted FS ellipsoid the
quasiparticle velocities for the class A and B gap functions
are well represented. For class A ��= 	

2 � we note that now v
is parallel to the Bragg plane �no c component� as it should
whereas for class B only the sign of the c component is
reversed with respect to the �-centered FS �left, dashed line
of Fig. 3�. This does not influence the absolute DS which
enters in the thermal conductivity. Therefore the results for
class B will be the same as before but for class A it will be
completely different. Technically the A-centered FS model
may simply be implemented by the shift

�� = ckz� = c�kz −
	

2c
� = � −

	

2
, �10�

which means that for class A:�= 	
2c →��=0 and for class

B:�= 	
4c →��=− 	

4c . To correct the previous analysis by using
the proper Fermi-surface geometry, we therefore have to
make this substitution in Eq. �6� for the Doppler-shift inte-
grand. As explained above this will lead to a complete
change in angular dependence of ��yy��� for class A but no
change for class B. The final correct result of the treatment
using Eqs. �4�–�6� and using the proper A-centered FS �Eq.
�10�� is presented in Fig. 5. It shows that �i� �0 cos kz �class
A node line �= 	

2c � is in excellent agreement with the experi-
mentally observed angular dependence of thermal conductiv-
ity. �ii� �0 cos 2kz �class B, node lines �= 


	
4c � can be ruled

out because it predicts the wrong periodicity of angular
variations in thermal conductivity.

VI. DISCUSSION

The conclusion drawn from the DS analysis presented
here are in complete agreement with the qualitative argu-
ments and proposals made in �I� but do not support those in
�II�. We have shown in detail how this discrepancy arose.

Because of an approximate Doppler-shift calculation in
�II�, it was not noticed that the class B gap function predicts
the wrong periodicity. Furthermore due to a FS model which
has a forbidden quasiparticle velocity component perpen-
dicular to the Bragg plane, an upturn of thermal conductivity
with increasing field angle � for class A gap function was
obtained. Together this has led to a conclusion on gap sym-
metry which is opposite to the correct one depicted in Fig. 5.
Therefore as far as the DS analysis of thermal conductivity is
concerned, �0 cos kz agrees with experimental observation
and �0 cos 2kz may be ruled out.

FIG. 4. �Color online� Two simplified FS models for UPd2Al3.
Left: a �-centered ellipsoid FS. In this case quasiparticles in the
�=	 /2 line node of �0 cos kz which is lying in the Bragg plane
have a velocity component vc perpendicular to the Bragg plane.
This is not allowed by Bloch’s theorem; therefore this FS model
may not be used for calculating the thermal transport for this super-
conducting gap function. Right: the proper main FS sheet of
UPd2Al3 is a �-centered corrugated cylinder �full line�. For the
quasiparticles in the node lines of �0 cos kz ��=	 /2� and
�0 cos 2kz ��=−	 /4�, this may locally be approximated by a
shifted �Eq. �10�� A �0,0 ,	 /2c�-centered ellipsoid �dashed line�.
Both the true and approximate FSs have vc=0 for the node line �
=	 /2 ���=0� of �0 cos kz, compatible with Bloch’s theorem.
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FIG. 5. �Color online� A comparison of the normalized thermal-
conductivity calculations for �0 cos kz �full line, �=	 /2� and
�0 cos 2kz �dashed line, �=	 /4� using the exact numerical integra-
tion of Doppler-shift expressions �Eqs. �4�–�6��. Here the A
�0,0 ,	 /2c�-centered elliptical Fermi-surface model of Fig. 4 �right�
is used. The symbols are the experimental results from Watanabe et
al. �Ref. 19� �I�. While the gap model �0 cos kz ��=	 /2 or ��=0�
agrees with experimentally observed oscillations, the gap model
�0 cos 2kz ��=	 /4 or ��=−	 /4� leads to the wrong period of an-
gular oscillations in ��yy���.
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A few words of caution are finally appropriate. The real
strength of angle-resolved magnetothermal transport consists
in its power to determine the node line orientation with re-
spect to the crystal axes. This feature is based simply on the
observation �or lack thereof� of thermal-conductivity oscilla-
tions for the appropriate geometry. This qualitative fact is
already sufficient to rule out gap function candidates that
have the wrong orientation of node lines, e.g., the one pro-
posed in Ref. 40 for UPd2Al3. However, it is not sufficient to
discriminate between different order parameters with the
same node line orientation because both will lead to field-
angular oscillations. Then a detailed comparative analysis of
oscillations such as presented here is necessary. Naturally the
conclusions may depend on the type or quality of approxi-
mations that have been used to calculate ��yy���. The
present approach, which was also used in �II�, is based on a
simplified analytical approximation based on the Doppler-
shift theory for magnetotransport. The conclusions reached
here are in complete agreement with those obtained by
purely qualitative arguments in �I� �see Fig. 4 of this refer-
ence� which have been further substantiated by fully numeri-
cal treatment of Doppler-shift calculations of thermal
conductivity21 for the cylindrical FS model. Thus our present
conclusions are consistent with the previous work. As a re-
sult the Doppler-shift analysis of thermal conductivity pre-
sented here forces us to reject the proposal of a �0 cos 2kz
gap function. An alternative to the low-field Doppler-shift
method is the semiclassical treatment of thermal transport in
UPd2Al3 which is in principle valid at larger fields. It was
used in Ref. 41 and applied to the cylindrical FS model. The
conclusions are somewhat different; it is mentioned there
�but not shown explicitly� that all gap functions investigated
exhibit either twofold or fourfold oscillation depending on
whether the anisotropy parameter � is smaller or larger than
the value used here.

It is now clear that a proper inclusion of the actual Fermi-
surface properties is important for drawing the right conclu-
sions from the angle dependence of the thermal conductivity.
The latter is not directly a fingerprint of the nodal gap struc-
ture only. As we have shown one has to make sure that, for
those gap models which are compared, the Fermi surface and
quasiparticle velocities are realistically described, which
should be obvious from the basic Doppler-shift energy ex-
pression. In particular the symmetry requirements on the di-
rection of v resulting from Bloch’s theorem have to be re-
spected. Such a procedure is most easily followed when the

Fermi surface is strongly dominated by one sheet, as is the
case for the corrugated cylinder of UPd2Al3. For a material
with a complicated many sheet Fermi surface the Doppler-
shift model used here may be more difficult to employ but
qualitative conclusions on the node line orientation can still
be made.

VII. CONCLUSION

The symmetry determination of superconducting order
parameters is a difficult problem, especially in cases such as
heavy-fermion systems where direct methods such as angle-
resolved photoemission spectroscopy are not applicable. The
most powerful methods to date are the classical Knight shift
and NMR relaxation studies, and more recent methods such
as field-angle-resolved thermal conductivity and the observa-
tion of feedback resonance effects in inelastic neutron scat-
tering. Usually the choices of gap symmetry are not unique
and the issue has to be studied in detail until a consensus
may be reached. The case of UPd2Al3 has special importance
because it is the only heavy-fermion system where the pair-
ing mechanism has been identified.8,22 Therefore resolving
the ambiguity that arose in �I� and �II� through the interpre-
tation of thermal-conductivity measurements has been an ur-
gent problem which we have resolved here.

Together, using the results of all methods cited above we
conclude that beyond any reasonable doubt the supercon-
ducting gap function in UPd2Al3 is of class A, i.e., �0 cos kz
as proposed in �I�, with possible admixture of higher har-
monics as described in Eq. �2�. This means that the node
lines are lying in the AF Bragg planes �= 	

2 . This choice of
the gap function is compatible with thermal-conductivity re-
sults, its nodal positions are required by the observation of an
INS feedback resonance, and it is the natural outcome of
microscopic theoretical models. Furthermore this supercon-
ducting state may easily coexist with the observed large mo-
ment background AF order. None of these conditions is ful-
filled for the subsequently proposed �0 cos 2kz gap function.
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